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ABSTRACT
Use of biotechnological approaches and processes to increase of soil fertility and productivity,

allow to be made sustainable agriculture with less use of chemical fertilizers. So, the aim of this
study was to understand the biochemical mechanisms of action of the 10 different plant growth
promoting rhizobacteria (PGPR) species (Bacillus megaterium (M3), Pantoea agglomerans (RK-92),
Bacillus megaterium (Tv-17C), Bacillus megaterium (Tv-3D), Bacillus megaterium (Tv-87A),
Hafnia alvei (Tv-34A), Bacillus megaterium (Tv-60D), Pseudomonas fluorescens (FDG-37),
Bacillus megaterium (KBA-10) and Bacillus megaterium (Tv-91C) on their host plant. Results of
this study show that the maximum amino acids etc., aspartate, asparagine, glutamine, proline,
organic acid etc., malonic acid, oxalic acid and hormone etc., indol-3-acetic acid (IAA), gibberellic
acid (GA) and salicylic acid (SA) super oxygen dismutase (SOD), peroxidase (POD) enzyme activity,
alkaline phosphatase (ALPA) and acid phosphatase enzyme activity (APA), nutrient concentration
of Ca, K, Mg, Na, P, S, N, Cu, Fe, Mn, Zn, B and Al were determined in B. megaterium M3,
respectively. The highest cysteine, valin, methionine, tryptophan, isoleucine, leucine butyric acid,
maleic acid, were determined from B. megaterium (Tv-17C); the highest urease (UEA) and
dehydrogenase (DEA), enzymatic activities were found in Pantoea agglomerans (RK-92) but CAT
enzyme  activity  was   detected   in  Pseudomonas  fluorescens  (FDG-37). The data suggested that
B. megaterium M3, B. megaterium (Tv-17C) and Pantoea agglomerans (RK-92) strains tested have
the potential to be used as an organic fertilizer source for plant growth in sustainable and organic
farming.
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INTRODUCTION
Plant Growth-Promoting Rhizobacteria (PGPR) are free-living microorganisms that have

beneficial  effects  on  plants  by  colonizing  in  their  rhizosphere  or  phyllosphere  (Bashan and
de  Bashan,  2005).  In  general,  beneficial  free-living  bacteria   are    usually    referred    to   as
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Plant-Growth-Promoting Rhizobacteria (PGPR) which can affect plant growth directly or indirectly.
One potential way to decrease negative environmental impacts resulting from continued use of
chemical fertilizers is inoculation with PGPR. Apart from fixing N , PGPR can affect plant growth2

directly by the synthesis of phytohormones (auxins, cytokinins, gibberellins) and vitamins,
inhibition of plant ethylene synthesis, enhanced stress resistance and improved nutrient uptake,
solubilization of inorganic phosphate and mineralization of organic phosphate. Indirectly,
diazotrophs are able to decrease or prevent the deleterious effects of pathogenic microorganisms
(Zahir et al., 2004; Bashan and de Bashan,  2005;  Antoun  and  Prevost,  2006;  Podile  and
Kishore, 2007).

Bacteria are able to exert positive effects on plants through various mechanisms. Nitrogen
fixations contributes organic nitrogen for plant growth, while the bacterial enzyme 1-Amino-
Cyclopropane-1-Carboxylate (ACC) deaminase hydrolysis ACC (the immediate precursor of
ethylene) and lowers the levels of ethylene produced in developing or stressed plants, promoting
root elongation. Some bacteria solubilize insoluble minerals through the production of acids,
increasing the availability of phosphorus and other nutrients to plants in deficient soils. Several
bacteria improve plant growth through suppression of pathogens by competing for nutrients, by
antibiosis, or by synthesizing siderophores which can solubilize and chelate iron from the soil and
inhibit the growth of phytopathogenic microorganisms (Caballero-Mellado et al., 2007).

It is well known that a considerable number of bacterial species, mostly those associated with
the plant rhizosphere, are able to exert a beneficial effect on plant growth. The use of those bacteria
as biofertilizers in agriculture has been a focus of research for a number of years. The bacteria have
been called plant growth-promoting rhizobacteria (PGPR) (Davison, 1988) and include strains in
the genera Azospirillum, Azotobacter, Bacillus, Enterobacter, Pseudomonas, Serratia and
Streptomyces (Kloepper and Beauchamp, 1992; Hoflich et al., 1994; Cakmakci et al., 2007a). The
beneficial impact of PGPR are thought to be direct plant growth promotion by the production of
plant growth regulators (Esitken et al., 2003, 2006; Orhan et al., 2006; Turan et al., 2006, 2012;
Cakmakci et al., 2007a, b; Karakurt et al., 2011; Gunes et al., 2014), enhanced access to soil
nutrient  (Ogut  and  Er, 2006), disease control (Cuppels et al., 1999; Kotan et al., 2004, 2009;
Kotan and Sahin, 2006; Erman et al., 2010; Fayetorbay et al., 2010; Karagoz and Kotan, 2010;
Esitken et al., 2002) and associative  nitrogen  fixation  (Zhang et al., 1996; Elkoca et al., 2007).

Bacillus species are among the most common soil bacteria groups and they are frequently
isolated from the rhizosphere of plants (Bai et al., 2003). Bacillus species used as biofertilizers may
have  direct  effects  on  plant  growth  through  the  synthesis  of plant growth hormones
(Cakmakci et al., 2007a, b), N2-fixation (Cakmakci et al., 2001) and solubilization of phosphate
(Sahin et al., 2004). The N -fixing and P-solubilizing Bacillus spp. stimulate plant growth through2

enhanced N and P nutrition (Orhan et al., 2006), increasing the uptake of N, P, K, Ca, manganese
(Mn), zinc (Zn) and Fe (Biswas et al., 2000; Esitken et al., 2003; Han and Lee, 2005; Orhan et al.,
2006;  Cakmakci  et  al.,  2007a;  Turan  et al., 2012; Cakmakci et al., 2014). Trials with
rhizosphere-associated plant growth-promoting N -fixing and P-solubilizing Bacillus species2

indicated yield increases in many crops such as wheat (Caceres et al., 1996; Ozturk et al., 2003)
barley (Cakmakci  et  al.,  2001;  Ozturk  et  al., 2003) sugar beet (Cakmakci et al., 2001), canola
(De Freitas et al., 1997) and maize (Pal, 1998). Because of their spore-forming ability, plant growth
promoting Bacillus strains are readily adaptable to commercial formulation and field application
(Liu and Sinclair, 1993).
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Intensive farming practices, that warrant high yield and quality, require extensive use of
chemical fertilizers which are costly and create environmental problems. Therefore, more recently
there has been a resurgence of interest in environmental friendly, sustainable and organic
agricultural practices. However, yield reduction is an important problem in organic production
system (Lind et al., 2003). Use of organic fertilizers containing sewage sludge, seaweed and lichen
is known to improve plant growth and help to sustain environmental health and soil productivity
(O’Connell, 1992; Turkmen et al., 2004; Turan and Kose, 2004). Crop, vegetable and fruits are
relatively easy to produce using organic fertilizer sources as long as enough nutrients are available
(Kuepper et al., 2003).

Objectives of the present study were to understand the action mode of the PGPR on their host
plant and evaluate some chemical properties of PGPR strains as a plant nutrient source for
sustainable and organic agriculture.

MATERIALS AND METHODS
Bacterial strains: All  bacterial  strains   (Bacillus  megaterium  (M3),  Pantoea  agglomerans
(RK-92), Bacillus megaterium (TV-17C),  Bacillus  megaterium  (TV-3D),  Bacillus  megaterium
(TV-87A), Hafnia alvei (TV-34A), Bacillus  megaterium  (TV-60D),  Pseudomonas  fluorescens
(FDG-37), Bacillus megaterium (KBA-10) and Bacillus megaterium (TV-91C) tested in the present
study were obtained from Dr. Recep Kotan (Atatürk University, Agriculture Faculty, Department
of Plant Protection, Erzurum, Turkey). These bacteria used in this study were identified and
reported as plant growth promoting bacteria and potential bio-control agents against a wide range
of bacterial and fungal pathogens that cause economically important problems in agriculture
(Kotan et al., 2005; Recep et al., 2009; Erman et al., 2010).

Bacterial growth and laboratory experiment: Bacteria were grown on Nutrient Agar (NA)
for routine use and maintained in Nutrient Broth (NB) with 15% glycerol at -80°C for long-term
storage. For each experiment, a single colony was transferred to 500 mL flasks containing NB and
grown aerobically in flasks on a rotating shaker for 48 h at 27°C (Merck KGaA, Germany) and
diluted to a final concentration of 10 CFU mLG  (colony forming units) using sterile distilled water8  1

containing 0.025% Tween 20. Twenty-five bacteria sample of each PGPR were used in the
experiment to determine organic acid, amino acid, hormone, enzyme activity and nutrient content.

Amino acid analysis: Amino acids were extracted from the samples and were analyzed as
described by Aristoy and Toldra (1991), Antoine et al. (1999) and Henderson et al. (2000).

Organic acid analysis: The organic acids were analyzed by HPLC on Zorbax Eclipse-AAA
4.6×250 mm, 5 µm columns (Agilent 1200 HPLC) and absorbance of 220 nm in UV detector.

Hormone analysis: Extraction and purification processes were as described by Kuraishi et al.
(1991), Battal and Tileklioglu  (2001)  and  Davies (1995). The samples were filtered with Whatman
No. 1 filter paper and then supernatants were filtered through 0.45 µm filters (Cutting, 1991).
Supernatants were evaporated to dryness at 35°C by evaporator pumps. Dried supernatants were
solved using 0.1 M KH PO  (pH 8.0). Extracts were centrifuged at 5000 rpm for 1 h at 4°C to2 4

separating fatty acids (Palni et al., 1983). Polyvinylpolypyrrolidone (PVPP), 1 g was prepared and
added to supernatants to separate phenolic and colored matters (Qamaruddin, 1996;   Chen,  1991;
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Mooney and van Staden, 1984; Hernandez-Minea, 1991). Supernatants with PVPP were filtered
with Whatman No. 1 filter paper to remove PVPP (Cheikh and Jones, 1994). The hormones were
analyzed by HPLC on a Zorbax Eclipse-AAA C-18 column (Agilent 1200 HPLC).

Enzyme activities of PGPR: Phosphatase activity was determined using para-nitro-phenyl
phosphate (pNPP) as an orthophosphate monoester analogue substrate (Tabatabai, 1982).

Antioxidant enzymes analysis of PGPR: Superoxide dismutase (SOD), peroxidase (POD) and
catalase (CAT) enzyme activities in the apoplastic fractions were measured spectrophotometrically.
The CAT activity was measured by monitoring the decrease in absorbance at 240 nm in 50 mM
phosphate buffer (pH 7.5) containing 20 mM H O . One unit of CAT activity was define as the2 2

amount of enzyme that used 1 µmol H O  minG . The POD activity was measured by monitoring the2 2
1

increase in absorbance at 470 nm in 50 mM phosphate buffer (pH 5.5) containing 1 mM guaiacol
and 0.5 mM H O . One unit of POD activity was defined as the amount of enzyme that cause an2 2

increase in absorbance of 0.01 minG . The SOD activity was estimated by recording the decrease1

in optical density of nitro-blue tetrazolium dye by the enzyme (Dhindsa et al., 1981; Sairam and
Srivastava, 2002).

Element analysis: The Kjeldahl method and a Vapodest 10 Rapid Kjeldahl Distillation Unit
(Gerhardt, Konigswinter, Germany) were used to determine total N (Bremner, 1996) Ca, Mg, Na,
K, P, S, Fe, Cu, Mn, Zn, Pb, Ni and Cd contents of PGPR strains after wet digestion of dried and
ground sub-samples using a HNO -H O  acid mixture (2:3 v/v) with three steps (first step; 145ºC,3 2 2

75% RF, 5 min; second step; 180ºC, 90%  RF,  10  min  and  third  step;  100ºC, 40% RF, 10 min)
in  a   microwave   oven   (Bergof   Speedwave   Microwave  Digestion  Equipment  MWS-2)
(Mertens, 2005a). The Ca, Mg, Na, K, P, S, Fe, Cu, Mn, Zn, Pb, Ni and Cd were determined using
an Inductively Couple Plasma spectrometer (Perkin-Elmer, Optima 2100 DV, ICP/OES, Shelton,
CT 06484-4794, USA) (Mertens, 2005b).

Statistical analysis: Data was sorted by PGPR species and differences among species were
attained using Duncan test option in analysis of variance (SPSS., 2004). Differences were declared
to be significant at p<0.05.

RESULTS
Amino acids and organic acid contents of PGPR: Bacillus megaterium M3 had the highest
aspartate, glutamate, asparagine, serine, glutamine, glycine, threonine, tyrosine, proline,
hydroxyproline, malonic acid, oxalic acid, propionic acid, citric acid, fumaric acid but the highest
cysteine, valin, methionine, tryptophan, isoleucine, leucine butyric acid, maleic acid, were
determined from B. megaterium (Tv-17C) (Table 1 and 2).

Hormone contents of PGPR: Similarly, when compare to hormone content of PGPR, the highest
Indol-3-Acetic  Acid  (IAA),  Gibberellic  Acid  (GA)  and  Salicylic  Acid  (SA)  were  obtained  from
B. megaterium M3 (Fig. 1).

Antioxidant enzyme and other enzyme activities: The highest SOD, POD, ALPEA and APEA
were noted in B. megaterium M3 (Fig. 2) but the lowest was determined from B. megaterium Tv-3D
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Fig. 1(a-d): (a) Gibberellic  acid  (GA), (b) Indole acetic  acid  (IAA), (c)  Salicylic  acid  (SA)  and
(d) Abscisic acid (ABA) content of some studied PGPR species (Mean±Standard
deviation). Different letters within a PGPR species indicate means are significantly
different at p#0.05

Table 1: Amino acid content (pmol µLG ) of PGPR1

P.A B.M B.M B.M H.A B.M B.M B.M B.M

Amino acids B.M (M3) (RK-92) (Tv-17C) (Tv-3D) (Tv-87A) (Tv-34A) (Tv-60D) (FDG-37) (KBA-10) (Tv-91C)

Aspartate 965±7 868±5 877±7 129±3 228±5 91±4 742±4c 582±5 433±5 730±6a b b g f g d e c

Glutamate 15021±20 13519±17 16947±15 7501±6 6673±6 5187±9 10138±12 7151±6 7332±6 14122±5a b a d e f c d d b

Asparagine 955±9 859±6 343±6 106±6 220±5 352±11 265±5 903±4 433±4 286±8a a b d c b c a b c

Serine 814±11 733±5 876±8 151±4 240±4 81±5 455±6 532±6 408±3 730±6a b a e d e c c c b

Glutamine 941±12 847±8 810±7 414±5 390±4 523±6 652±5 426±4 467±7 675±5a b b d e cd c d d c

Histidine 10585±24 11126±12 12963±12 9186±10 5531±6 5353±7 9517±8 6897±3 7209±5 14969±7c b b d f f d e e a

Glycine 2881±8 2593±9 594±8 412±8 813±8 711±5 255±5 214±6 1141±6 495±8a a d e c c f f b e

Threonine 3289±11 2960±8 677±5 375±6 733±5 1999±6 318±3 612±3 1359±8 564±6a b c e c b e c b d

Arginine 8452±19 9007±10 8197±9 7041±8 8290±9 8791±9 8290±6 7574±4 6551±4 8498±5b a b c b ab b c d b

Alanine 1718±11 1546±5 974±6 109±5 563±5 178±3 2551±5 1217±3 696±6 811±4b b c f e f a b d c

Tyrosine 1149±13 1035±6 1927±8 857±8 637±4 651±5 898±4 1089±5 503±5 1606±6a a a b d d c b e a

Cystine 4956±14 4460±8 8986±10 3997±6 2933±10 3203±6 4228±6 2655±3 2477±8 7489±8c c a cd d d c e e b

Valin 2148±12 1933±9 3725±6 1711±7 1418±5 2391±4 2069±7 1149±4 932±6 3104±4b b a c c b b c d a

Methionine 1292±9 1163±7 3242±8 1058±5 1028±4 1341±5 1640±6 824±3 642±4 2701±6d d a e e d c e f b

Tryptophan 5273±10 4746±9 9435±7 4528±6 3262±3 3457±4 4674±5 2977±5 2450±6 7863±5c d a d e e d f f b

Phenylalanine 1159±8 1043±8 1094±6 4595±6 3143±5 786±5 312±3 223±3 526±7 912±6b b b a a c e e d bc

Isoleucine 9360±11 8424±6 9917±8 7282±7 5605±6 5911±6 8035±6 4952±5 4527±8 7431±4a b a c d d b d d c

Leucine 654±14 755±7 1755±6 812±5 734±5 661±4 912±5 411±3 338±6 1462±6c d a c d d c e e b

Lysine 11353±11 10218±18 17514±8 14205±12 14093±11 11629±11 10684±6 10539±14 11024±4 12928±6c d a b b c d c c

Hydroxyproline 3693±5 2472±8 4432±5 1601±5 941±5 1205±5 1232±4 825±5 1247±6 2747±12a c b d f e e f e c

Sarcosine 4656±11 4191±9 11671±6 3320±3 2777±6 2962±6 6160±6 4504±6 2024±5 9725±6c c f d e e b c e a

Proline 6656±8 1872±8 2080±14 2192±4 2018±4 1792±5 2705±5 2154±7 1023±6 5547±5a cd c c c c c c d b

Values (n = 25) in the same row with a different letters are significantly different (p#0.05). Mean±standard deviation

(Fig. 2 and 3). The highest urease (UEA) and dehydrogenase (DEA) enzymatic activities were
found in Pantoea agglomerans (RK-92) but CAT enzyme activity was detected in Pseudomonas
fluorescens (FDG-37) (Fig. 2 and 3).
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Fig. 2(a-c): Antioxidant enzyme activity of (a) CAT, (b) POD and (c) SOD of some studied PGPR
species (Mean±Standard Deviation). Different letters within a PGPR species indicate
means are significantly different at p#0.05

Table 2: Organic acid content (ng µLG ) of PGPR (n = 25)1

P.A B.M B.M B.M H.A B.M B.M B.M B.M

Organic acids B.M (M3) (RK-92) (Tv-17C) (Tv-3D) (Tv-87A) (Tv-34A) (Tv-60D) (FDG-37) (KBA-10) (Tv-91C)

Oxalic acid 806±6 191±3 692±4 368±3 110±3 387±5 403±3 620±3 413±5 735±5a e b d e d c b c a

Propionic acid 1772±6 1363±4 1143±6 640±4 783±4 1018±5 767±7 1495±3 321±4 904±4a b c e e c e b f d

Tartaric acid 893±5 705±3 1429±5 501±5 405±3 973±4 681±5 1676±5 306±3 1986±6d d c e e cd e b f a

Butyric acid 4197±5 1033±5 9972±6 829±6 594±5 1502±6 4608±5 9256±4 5729±4 8711±5d e a g g f d a c b

Malonic acid 20855±12 1572±4 6036±6 3418±5 904±3i 4024±5 3895±7 5985±3 2951±6 7093±6a h c f e f d g b

Malic acid 3195±5 1193±5 1126±5 452±4 686±4 697±5 844±5 1899±5 862±4 2251±4a c c e de de  d b d b

Lactic acid 58787±4 22432±5 37057±4 20819±11 17667±4 35982±6 49823±7 66650±9 22544±9 62696±5b e d e f d c a e a

Citric acid 8938±5 3889±6 7027±3 753±3 2236±5 1597±4 3417±7 7542±4 1048±5 5296±6a d b h e f d b f c

Maleic acid 811±4 2016±4 3693±5 400±6 1159±6 763±5 407±3 1473±5 198±6 1746±4f b a g e f g d h c

Fumaric acid 990±3 221±3 388±3 110±9 127±5 584±5 266±3 835±3 257±3 247±5a e d c e b e e

Succinic acid 47914±8 25074±5 44434±4 21867±11 34417±6 26994±6 25461±7 40427±7 29454±4 31567±5a cc ab b c b bc b

Values in the same row with a different letters are significantly different (p#0.05). Data is taken as Mean±SD

Macro-micro and heavy metal content of PGPR: The levels of minerals important for plant
nutrition are presented in Table 3 and 4. There were statistical significant differences between the
PGPR species in respect of total microelement concentration. The highest concentration of Ca, K,
Mg, Na, P, S, N, Cu, Fe, Mn, Zn, B and Al were obtained from B. megaterium M3. With regard to
Cd, Ni, Cr and Pb, Hafnia alvei (Tv-34A) had the highest content.
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Fig. 3(a-d): (a) Dehydrogenase activity (DEA), (b) Urease activity (UEA), (c) Alkaline phosphatase
activity (ALPEA) and (d) Acid phosphatase activity of (APEA) some studied PGPR
species (Mean±Standard Deviation). Different letters within a PGPR species indicate
means are significantly different at p#0.05

Table 3: Macro element content of some studied PGPR species

Ca K Mg Na P S N

PGPR species ---------------------------------------------------------(mg kgG )-----------------------------------------------------1

Bacillus megaterium (M3) 12.40 207 5.40 1457 81 75 1610a a a a a a a

Pantoea agglomerans (RK-92) 5.25 147 3.08 951 48 58 580d d c b c b d

Bacillus megaterium (Tv-17C) 3.11 162 4.61 821 38 33 290e c b b d d g

Bacillus megaterium (Tv-3D) 6.35 126 2.15 725 26 43 475c e d b e c e

Bacillus megaterium (Tv-87A) 7.12 146 1.66 825 38 54 360b d e b d b f

Hafnia alvei (Tv-34A) 3.61 170 2.83 621 37 55 420e c d bc d b e

Bacillus m gaterium (Tv-60D) 7.22 135 3.48 848 32 38 580e  b f c b d cd d

Pseudomonas fluorescens (FDG-37) 2.20 94 1.88 423 54 42 820f h e c bc c b

Bacillus megaterium (KBA-10) 3.12 110 0.99 800 42 40 660f f f b c c c

Bacillus megaterium (Tv-91C) 3.52 199 1.56 938 68 49 750f b e b b c c

Values (n = 25) in the same column with different letters are significantly different (p#0.05)

DISCUSSION
Effects on amino acids and organic acids produced from PGPR on plant growth: a
considerable number of fertilizer sources, mostly those associated with hormone, organic or amino
acid contents promote plant growth. These ingredients render insoluble forms of plant nutrients
into soluble forms through the process of acidification, chelation and exchange reactions. This
process not only compensates for the higher cost of manufacturing fertilizers in industry but also
mobilizes the fertilizers added to soil. Organic fertilizer source of PGPR, especially low grade and
its use in agriculture has received great attention. Foliar feeding, using bio based, natural organic
foliar fertilizer, is an effective method for correcting soil deficiencies and overcoming the soil’s
sustainability to transfer nutrients to the plant.
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Table 4: Micro element and heavy metal content of some studied PGPR species

Micro elements and heavy metals (mg kgG )1

------------------------------------------------------------------------------------------------------------------------------------

PGPR species Cu Fe Mn Zn B Al Cd Cr Ni Pb

Bacillus megaterium (M3) 0.31 § 1.64 0.55 2.41 0.66 0.94 0.013 0.011 0.011 0.05a a a a a a c c d b

Pantoea agglomerans (RK-92) 0.10 0.86 0.10 1.69 0.44 0.30 0.013 0.018 0.014 0.04d b d b c d c b c b

Bacillus megaterium (Tv-17C) 0.21 0.82 0.24 1.80 0.63 0.62 0.013 0.013 0.010 0.11b b c b a b c c d a

Bacillus megaterium (Tv-3D) 0.28 0.25 0.13 0.89 0.35 0.40 0.020 0.012 0.016 0.11b c d d d c a c f a

Bacillus megaterium (Tv-87A) 0.27 0.77 0.50 1.66 0.40 0.30 0.020 0.016 0.012 0.08b b a c c d a b d a

Hafnia alvei (Tv-34A) 0.38 0.76 0.33 1.18 0.52 0.23 0.023 0.019 0.024 0.10a b b c b e a a a a

Bacillus megaterium (Tv-60D) 0.30 0.91 0.32 1.30 0.30 0.29 0.018 0.010 0.019 0.09a b b c d e b c b a

Pseudomonas fluorescens (FDG-37) 0.19 0.84 0.23 1.14 0.13 0.31 0.023 0.014 0.018 0.12c b c c f d a c b a

Bacillus megaterium (KBA-10) 0.14 0.99 0.27 0.83 0.24 0.29 0.018 0.011 0.011 0.12d b c d e d b c d a

Bacillus megaterium (Tv-91C) 0.01 0.18 0.32 1.39 0.32 0.24 0.022 0.011 0.015 0.11d d b c d e a c c a

Values in the same column (n = 25) with a different letters are significantly different (p#0.05)

Amino acids presence in the medium may promote shoot production-through the differentiation
of dividing cells that is the reason that it possess comparatively low growth potential because the
majority  of  dividing  cells  become  differentiated  rather  undergoing  faster  cell proliferation
(Asad et al., 2009). Organic acids have a potential role as metabolically active solutes for the osmotic
adjustment and the balance of cation excess in the plant. Organic acids also participate as key
components in the mechanisms that some plants use to cope with nutrient deficiencies, metal
tolerance and plant-microbe interactions operating at the root-soil interface. Because of its high
affinity for di-and tri-valent cations, citrate and other organic acids can displace P from insoluble
complexes, making it more soluble and thus available for plant uptake and stimulate nitrate uptake
of plant (Struthers and Sieling, 1950; Bradley and Sieling, 1953). Exogenous amino acids can
modulate membrane permeability and ion uptake and probably this is the major component by
which amino acids help in mitigating drought or salt stress effects.

In this study, B. megaterium M3, B. megaterium (Tv-91C) and B. megaterium (Tv-17C)
species/strains may have beneficial effect on plant growth under unfavorable plant growth
condition due to their high level of amino acid and organic acid contents. This suggests that amino
acid and organic acid production in the PGPR, or a change in the rhizosphere’s chemical properties
could benefit to plant growth. Similar findings were reported in previous studies showing that
application of PGPR may stimulate yield, growth and nutrient element uptake from soil in different
plant species under stress plant growth conditions for different crops. Proline, alanine, serine and
asparagine also delayed wilting of maize under stress conditions, proline, glycine, alanine, leucine,
threonine, lysine, arginine, tryptophan and phenylalanine inhibited stomatal opening while
histidine, methionine, aspartic acid, glutamic acid, asparagine and glutamine promoted stomatal
opening of Vicia faba, histidine, proline, glutamine, methionine and glycine promoted calcium
uptake in Phaseolus seedlings, proline relieved salt toxicity in barley plant lets by changing salt
transport from root to shoot and increasing proline content increased K  content and alleviated salt+

stress effects on growth of Vigna radiate cultures (Thakur and Rai, 1985; Rai and Sharma, 1991;
Rai and Rana, 1996; Lone et al., 1987; Kumar and Sharma, 1989).

The  most  useful  PGPR  application  to  stimulate  yield  of  some  fruit  such as mulberry
(Morus alba L.), apricot (Prunus armenia L.), sweet cherry (Prunus avium L.) and raspberry
(Rubus ideaus L.) (Esitken et al., 2003, 2006; Orhan et al., 2006; Turan et al., 2006, 2007) and
cereal crop species such as wheat (Cakmakci et al., 2007a; Turan et al., 2012) and other cereal crops
such as maize and barley (Malhotra and Srivastava, 2009) have been subjected to seed inoculation.



Res. J. Soil Biol., 7 (2): 28-45, 2015

36

Effects on hormone and nutrient content of PGPR on plant nutrition: The present results
showed that the highest gibberellic acid, salicylic acid and IAA were found from B. megaterium M3,
followed by B. megaterium (Tv-17C) and B. megaterium (Tv-60D) but ABA  from  B. megaterium
(Tv-87A) (Fig. 1). Direct mechanisms of PGPR facilitates plant growth is including the production
of plant growth regulators or phytohormones (Glick, 1995). The production of phytohormones such
as, auxins (IAA), cytokinins and gibberellins by natural soil microbial communities have been
reported  by  various  workers  over  the  last  20  years (Poonguzhali et al., 2008; Ahemad and
Khan, 2010). Indol-3-acetic acid, a main auxin in plants, is known to control many important
physiological processes of plants, such as, cell enlargement, cell division, root initiation, growth rate,
phototropism, geotropisms and apical dominance etc. (Zaidi et al., 2009). In plant cells, IAA is
largely formed by de novo synthesis from tryptophan that undergoes either oxidative deamination
or decarboxylation with indole-3-acetic aldehyde as an intermediate. Indole-3-acetic acid (IAA)
controls a wide variety of processes in plant development, control many important physiological
processes of plants, such as cell enlargement, cell division, root initiation, growth rate, phototropism,
geotropisms and apical dominance etc. and plays a key role in shaping plant root architecture such
as regulation of lateral root initiation, root vascular tissue differentiation, polar root hair
positioning, root meristem maintenance and root gravitropism (Aloni et al., 2006; Fukaki et al.,
2007). Production of IAA is widespread among  rhizobacteria  (Khalid  et  al., 2004; Patten and
Glick, 1996; Spaepen et al., 2007), with increasing numbers of endophytic IAA-producing PGPR
being reported (Tan and Zou, 2001). Cytokinins stimulate plant cell division, control root meristem
differentiation, inhibit primary root elongation and lateral root formation but can promote root hair
development (Riefler et al., 2006; Silverman et al., 1998). Cytokinin production has been reported
in various PGPR including, Arthrobacter spp., Azospirillum spp., Pseudomonas fluorescens and
Paenibacillus polymyxa (Cacciari et al., 1989; De Salamone et al., 2001; Perrig et al., 2007;
Timmusk et al., 1999). The cytokinin receptors play a complimentary role in plant growth promotion
by B. megaterium (Ortiz-Castro et al., 2008). Gibberellins enhance the development of plant tissues
particularly stem tissue and promote root elongation and lateral root extension (Barlow et al., 1991;
Yaxley  et  al.,  2001).  Production  of  gibberellins  have  been  documented   in   several  PGPR
such  as   Azospirillum   spp.,  Azotobacter  spp.,  Bacillus  pumilus, B. licheniformis,
Herbaspirillum seropedicae, Gluconobacter diazotrophicus and rhizobia (Bottini et al., 2004;
Gutierrez-Manero et al., 2001).

When the crop is inoculated with PGPR strains which are capable of IAA production
significantly increased the plant growth by enhancing N, P, K, Ca and Mg uptake of sweetpotato
cultivars (Farzana and Radizah, 2005). Most of the PGPR strains analyzed in the present study
were found to contain significant quantities of variety of essential nutrients. Results in this study
demonstrated that the highest Ca, K, Mg, Na, P, S, N, Cu, Fe, Mn, Zn, B and Al in B were obtained
from B. megaterium M3. With regard to Cd, Ni, Cr and Pb, Hafnia alvei (Tv-34A) had the highest
content. The data suggested that some PGPR strains tested had a very high nutritional potential
and  their  mineral  content  was  even  greater  than  that  of  some organic fertilizer sources. Plant
developmental processes are controlled by internal signals that depend on the adequate supply of
mineral nutrients by soil to roots. Thus, the availability of nutrient elements can be a major
constraint to plant growth in many environments of the world, especially the tropics where soils are
extremely low in nutrients. Plants take up most mineral nutrients through the rhizosphere where
microorganisms interact with plant products in root exudates. Plant root exudates consist of a
complex mixture of organic acid anions, phytosiderophores, sugars, vitamins, amino acids, purines,
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nucleosides, inorganic ions (e.g., HCO G, OHG, H ), gaseous molecules (CO , H ), enzymes and root3      2  2
+

border cells which have major direct or indirect effects on the acquisition of mineral nutrients
required for plant growth.

Acetic acid, glycolic, malonic, oxalic, formic and abscisic acid play a crucial role in nutrient
acquisition (P, Fe and Mn) by plants growing in low nutrient soils and their release in response to
nutrient  starvation  differs  between  plant  species (Ae et al., 1990; Fox and Comerford, 1990;
Smith, 1969, 1976; Vancura and Hovadik, 1965). The concentrations of fumaric, malic and citric
acids can also chelate Fe and Mn in iron and manganese oxides (i.e., Fe O  and MnO ), thus2 3  2

making them available for uptake by the plant (Ohwaki and Hirata, 1992; Marschner, 1995).
Similarly, these acid anions form complexes with Ca, Al and Fe present in soil as insoluble
phosphates of calcium, iron and aluminium and liberate P for uptake by roots (Marschner, 1995).
Additionally,  these  acids   can   desorb   P   from   sesquioxide  surfaces  by  anion  exchange
(Bolan et al.,  1994; Jones, 1998; Jones and Darrah, 1994; Parfitt, 1979) and also maintain
sulphate mobility in rhizosphere   soil   through   competitive  displacement  from  adsorption  sites
(Evans and Anderson, 1990).

Effects on enzyme activity of PGPR on plant growth under stress condition: Our data
showed that SOD, POD and CAT contents of B. megaterium  (M3),  P.  fluorescens  (FDG-37)  and
B. megaterium (Tv-87A) were higher than the other PGPR species tested in this study (Fig. 2). The
antioxidant enzyme activities has been reported to increase under cold, saline, high light and soil
pollution  conditions  in  the  case  of  cucumber  seedlings  (Kang   and   Saltveit,   2001),  olive
(Olea europea L.), wheat (Biemelt et al., 2000). Our data supported the evidence that PGPR
application may also assist growth by alleviating negative effects of cold stress via promoting
accumulation of antioxidant enzyme activities, decreasing reactive oxidative oxygen species (ROS)
such as H O , O and OH in response to cold stress. The P-solubilising PGPR strains application also2 2  2 

altered ALPEA and APEA of soil. The highest ALPEA and APEA activity of soil was obtained from
B. megaterium M3 (Fig. 3). ALPEA and APEA are involved in the transformation of organic and
inorganic compounds in soil (Amador et al., 1997). An increase of phosphatase activities can
improve the P nutrient status of the soil. Mineralization of soil organic P (Po) plays an imperative
role in phosphorus cycling of a farming system. Alkaline and APE use organic phosphate as a
substrate to convert it into inorganic form. Principal mechanism for mineralization of soil organic
P is the production of acid phosphatases (Rodriguez and Fraga, 1999). Release of organic anions
and production of siderophores and acid phosphatase by plant roots/microbes or alkaline
phosphatase (Tarafdar et al., 1988) enzymes hydrolyze the soil organic P or split P from organic
residues.

The findings showed that PGPR strains consistently increase plant growth and yield and
alleviate some deleterious stress of plant with having organic acid, amino acid, hormone and
nutrient content quality of crops. In agreement with other reports (Sahin et al., 2004; Khan and
Zaidi,  2007), the data suggested that bio-inoculation of PGPR strains can improve growth, nutrient
uptake and the nutritional quality as shown for barley (Cakmakci et al., 1999; Sahin et al., 2004)
and in pearl millet and blackgram (Poonguzhali et al., 2005), potentials for improving plant yields
by combining PGPR by co-inoculation have also been a subject of several researchers for more than
a decade (Cakmakci et al., 1999; Felici et al., 2008). Seed inoculation of the A. brasilense
(Madhaiyan et al., 2010), B. OSU-142 and B. M-3 (Sahin et al., 2004) strains alone or under dual
inoculation increased the plant growth in terms of shoot or root length and increased the nutrient
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uptake  in  plants.  In  general,  microbial  inoculation  of  seeds  with  effective  B.  OSU-142 and
A. brasilense sp. 245, alone or in mixed inoculation with B. M-3, may substitute costly mineral
fertilizers and be used in organic and sustainable agriculture in crop production. Bacteria like
Azospirillum and Bacillus are widely used in organic production systems and they are also
important N -fixing, P-solubilizing and phytohormone-producing microorganisms, resulting in2

improved growth and yield of crops (Spaepen et al., 2008). One of the most often reported PGPR
is M-3 in Turkey which have range of reported properties, including N fixation, P-solubilization,2-

IAA and cytokinin production and increased root and shoot growth and yield (Sahin et al., 2004;
Cakmakci et al., 2006, 2007b; Karakurt et al., 2011).

It is well known that PGPR strains that produce plant hormones such as auxins and cytokinins
can stimulate plant cell elongation or cell division and/or change bacterial 1-aminocyclopropane-1-
carboxylate (ACC) deaminase activity (Cakmakci et al., 2007a) which prevents the production of
the plant growth-inhibiting hormone, ethylene (Patten and Glick, 2002; Penrose et al., 2001).
Rhizosphere bacteria’s ability of solubilize insoluble P minerals has been attributed to their capacity
to reduce pH by excretion organic acid (Gyaneshwar et al., 1999; Mullen, 2005). In previous
studies,  it  was  reported  that application of Bacillus megaterium Tv-17C, Bacillus megaterium
Tv-3D,  Bacillus  megaterium  Tv-87A,  Hafnia  alvei  Tv-34A, Bacillus megaterium Tv-60D,
Pseudomonas fluorescens FDG-37, Bacillus megaterium KBA-10 and Bacillus megaterium Tv-91C
strains used in the present study may stimulate yield and quality parameters in some plants such
as sugar beet, common vetch and wheat (Erman et al., 2010; Fayetorbay et al., 2010; Karagoz and
Kotan, 2010; Karakurt et al., 2011).

In the other hand Karagoz and Kotan (2010) reported that Pantoea agglomerans RK-92 and
Bacillus megaterium KBA-10 strains not only have N -fixation, P-solubilization properties and a2

positive effect on lettuce growth but also ability to suppress bacterial leaf spot of lettuce caused by
Xanthomonas axonopodis pv. vitiens. In addition, Karakurt et al. (2010) reported that Pantoea
agglomerans RK-92 strain caused a statistically significant increase on plant growth parameters
of one-year-old saplings at ‘sekerpare’ apricot cultivar. It’s reported that this strains have an
antibacterial and/or antifungal activity; can be used as a bacterial biocontrol agents against plat
pathogens (Kotan et al., 2004, 2009; Kotan and Sahin, 2006).

The present study reveals that PGPR species tested in this study were rich in hormone
(gibberellic acid, salicylic acid, indole acetic acid), organic acid (oxalic acid, lactic acid, tartaric acid,
malic acid), amino acid (proline, methionine, cystine, asparagine, alanine, proline), minerals (N, P,
K Ca, Mg, S, Fe, Cu, Mn, Zn and B), antioxidant enzyme, enzyme activity and nutritional potential
for plant growth and their nutritional value was greater than that of some organic fertilizer. These
would be more beneficial under environmental or nutrient stress condition. Moreover, PGPR species
are the least expensive sources for number of hormone and nutrients and provide macro and micro
minerals sustainable or organic farming. Further studies are required to determine the efficiency
of PGPR application some cultivated plant under field conditions with multiple soil types and to
better understand the additional benefits of these PGPR beyond their chemical capacity, as well as
economic feasibility of PGPR addition for varies crops.
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